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TRANSPORT COEFFICIENTS IN ROTATING WEAKLY COMPRESSIBLE

TURBULENCE *

ROBERT RUBINSTEIN?, YE ZHOU $, AND GORDON ERLEBACHER §

Abstract. Analytical studies of compressible turbulence have found that compressible velocity fluctua-

tions create both effective fluid transport properties and an effective equation of state. This paper investigates

the effects of rotation on compressible turbulence. It is shown that rotation modifies the transport proper-

ties of compressible turbulence by replacing the turbulence time scale by a rotational time scale, much as

rotation modifies the transport properties of incompressible turbulence. But thermal equilibrium properties

are modified in a more complex manner. Two regimes are possible: one dominated by incompressible fluc-

tuations, in which the sound speed is modified as it is in non-rotating turbulence, and a rotation dominated

regime in which the sound speed enhancement is rotation dependent. The dimensionless parameter which

discriminates between regimes is identified. In general, rotation is found to suppress the effects of compress-

ibility. A novel feature of the present analysis is the use of a non-Kolmogorov steady state as the reference

state of turbulence, introduction of such steady states expands the power and utility of analytical turbulence

closures to a wider range of problems.

Key words, compressible turbulence, rotating turbulence, closure models

Subject classification. Fluid Mechanics

1. Introduction. Rotating weakly compressible turbulence occurs in astrophysical flows and in engi-

neering flows like swirling jets. The development of transport models and sub-grid scale models for such

flows is difficult because the coupling between compressibility and rotation introduces at least two natural

dimensionless parameters: the turbulent Mach number Mt = K1/2/c and the inverse turbulent Rossby num-

ber _ = f_K/e. It is not easy to assess the combined effects of these parameters heuristically. Recourse to

DNS will require an unrealistically large number of simulations to cover a useful range of parameters. LES

will not be practical without sub-grid scale models which are sensitive to both rotation and compressibility:

the development of such models is a goal of this paper.

The present work addresses these problems using the rational statistical turbulence closure provided by

Yoshizawa's (1986,1995) two-scale direct interaction approximation (TSDIA), which is a natural and analyt-

ically tractable extension of Kraichnan's (1959) direct interaction approximation (DIA) to inhomogeneous

turbulence. It is based on previous work on the transport theory of weakly compressible turbulence (Rubin-

stein and Erlebacher, 1997, RE in what follows) and on an analytical theory of rotating turbulence initiated

by Zhou (1995).

The problem of weakly compressible turbulence, in which the equations for compressible quantities are

lincarized about a basic state of incompressible turbulence, was considered from the standpoint of TSDIA

in RE. TSDIA leads to a description of compressibility effects on the mean flow equations by a set of trans-
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port coefficients: this description generalizes the eddy viscosity description of incompressible turbulence.

Following Yoshizawa, the transport coefficients are expressed in terms of the fundamental statistical descrip-

tors of weakly compressible turbulence: the response and correlation functions of incompressible turbulence

(Kraichnan, 1959) and the additional statistical descriptors of the compressible part of the motion which

will be defined later in this paper. By assuming that the basic state of incompressible turbulence is in a

Kolmogorov steady state, it is possible to derive both formulas for the transport coefficients in terms of single

point descriptors of turbulence and, following Yakhot and Orszag (1986), sub-grid scale models for LES of

weakly compressible turbulence.

The analysis of rotation effects will be based on Zhou's (1995) scaling theory of rotating turbulence,

which demonstrates the existence of a steady state with constant intertial range energy flux in rotating

turbulence, but with non-Kolmogorov scaling exponents. In the limit of strong rotation, this theory is closely

related to the theory of weak turbulence (Zakharov et al, 1992) in which nonlinear temporal decorrelation of

Fourier modes is dominated by linear dispersive decorrelation. The extension of the theory of RE to rotating

turbulence will be accomplished by perturbing about this state of rotating incompressible turbulence instead

of about the Kolmogorov state.

Like previous investigations of compressible turbulence (Staroselsky et al, 1990; Chandrasekhar, 1951),

RE found two kinds of compressibility effects: modified transport coefficients and modified equilibrium

properties. Turbulence creates diffusivities for entropy and pressure and enhances the molecular shear and

bulk viscosities. But turbulence also modifies the specific heat ratio and creates an effective turbulent

pressure. These combined effects lead to an enhanced propagation speed for sound waves in the mean

flow; they can be considered as a modified equation of state for compressible turbulence. Rotation alters

the transport properties, as it does in incompressible turbulence, by replacing the turbulent time scale by

a rotational time scale. It will be shown that rotating compressible turbulence can exhibit two different

effective equations of state, depending on the size of the parameter ¢l/2Mt. In general, rotation tends to

suppress or counteract the effects of compressibility.

2. Review of the TSDIA Theory of Weakly Compressible Turbulence. The basic result of RE

is the following model for weakly compressible turbulence:
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(8) ff fo_II = _ 4_rk2dk dr kGVP(k, T)QP(k, r)

1[ 5:u_u= 4rk2dk dr G_W(k,r)Q(k,T)
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The quantities v, v s_, v _ and v u" are effective transport properties, whereas the effective turbulent pressure

II and effective mean density/_ define the modified equation of state of compressible turbulence. In Eqs.

(4)-(10), G and Q are the response and correlation functions, the fimdamental statistical descriptors of

isotropie turbulence in DIA (Kraichnan, 1959) and QP is the two-time pressure correlation function. The

compressible response functions G 4_, G 4w, GYp, G p4_,G _'° are defined in terms of the normalized Helmholtz

decomposition

(li) ui(k, t) = wi(k, t) + ikik-l¢(k, t)

and satisfy the DIA response equations, written in terms of time Fourier transforms,

(12) iwG_(k, w) + _G _ (k, w) -- 1

and

I[ ] ] [:°=(13)

Following RE, the response equations will be solved in a Markovianized limit in which the damping functions

_/in Eqs. (12), (13) are defined by
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(is)

/0 L_(k) = - d'r dpdqF_m(k,p,q)Gm'(q,v) ×
=p+q

r_(q,-p,k)Qmn(p,r)

where the quantities F, which characterize the interactions between the fields, are given by

ri_. (k, p, q) -----i(qmSin "q-Pn6im)

r_(k, p, q) = ikn

These equations are solved approximately in RE by a series expansion in turbulent Mach number. Weak

compressibility assumes the existence of a basic state of incompressible turbulence. If this turbulence is in

a Kolmogorov steady state, in which isotropy implies that

(19)

(20)

Gij (k, v) : G(k, r)Pij (k)

Qij (k, T) = Q(k, r)Pij (k)

the approximation leads, at lowest nontrivial order, to the conclusion that G ww is the response function of

a passive vector field, and to the expressions

(21)
k

G_P(k, T) = - _exp(-rl_7"/2)sin(Sr)H(v)

c 2k ¢
G pC (k, _') = P0 --_-exp(-r/ %'/2)sin (ST)H (_')

GVV(k, 7")= exp(-_ffCv/2)cos(Sv)H(r)

rlV4_
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r/¢¢Zk_
-_S ) exp(--rICVT/2)sm(Sv)H(T)(22)

where

(23) S = {c2k 2 - 1_]_¢(k)2}1/2

In non-rotating turbulence, the damping function rff _ is determined by the Reynolds analogy

(24) ,**(k) = .,_(k)

where a¢ is an inverse Prandtl number, and the incompressible spectral damping function _7(k) takes the

Kolmogorov scaling form

(25) rl(k) ---- CDel/3k 2/3

Analogs of these formulas for rotating turbulence will be developed subsequently. Once such formulas

are known, the integrals for transport coefficients Eqs. (4)-(10) can be evaluated explicitly. For turbulence

transport models, the integration will extend over the entire inertial range k > ko where k0 is the inverse

integral scale. Subgrid models are derived instead (Yakhot and Orszag, 1986) by integrating only over



TABLE 1

Scaling results of RE

Single-point model General subgrid Model Smagorinsky model

vpp M2 g2 /e _ 2 /c2 (S <)3_a/c2

v _ K2/E 61/3A4/3 (S<)A 2

H KM 2 _4/3A4/3/c2 (S<)4A4/c 2

1/[_ M_ E2/3_2/3/c 2 (S<)2n2/c 2

wavevectors which satisfy the condition k > 27r/A, where A is the filter size; as usual, this derivation assumes

that these scales are in the inertial range. The quantity _ can be closed by Smagorinsky's hypothesis of local

energy equilibrium. An interesting alternative, related to postulating the sweeping hypothesis for turbulent

time correlations, has been suggested recently by Yoshizawa et al (1996).

The results of RE are summarized in Table 1. The effective properties are given without the appropriate

constants, all of which could in principle be evaluated theoretically. The column labelled "general subgrid

model" contains the result of integrating the integral expression over the subgrid scales; the corresponding

"Smagorinsky model" is obtained by equating the dissipation rate to the resolved production. Throughout

the table, S < is defined by (S<) 2 = S<S <, where S< is the resolved fluctuating strain rate.

3. Review of the Statistical Theory of Rotating Turbulence. Kolmogorov scaling applies to a

homogeneous turbulent steady state with constant energy flux. External effects like rotation will modify

this steady state. Rotation is an especially simple external effect, since energy remains an inviscid invariant

under rotation, and a steady state with constant energy flux remains possible. Kolmogorov scaling no longer

applies to this steady state and the existence of a distinguished time scale, namely the inverse rotation rate,

precludes the deduction of the applicable scaling law by dimensional analysis alone. To deduce the scaling,

we will appeal to closure in the form of the direct interaction approximation.

For rotating turbulence, the DIA equations of motion take the form

(26)

(27)

where the eddy damping _] and forcing F are defined by

Gij (k, t, s) + 2Pip(k)_pqGqj (k, t, s)

+ dr rl_p(k,t,r)ap3(k,r,s) = 0

_)_ (k, t, s) + 2P_p(k)ftpqO_ (k, t, s)

//+ dr rhp(k,t,r)Qpj(k,r,s)

-- dr a_p(k,t,r)Fpj(k,s,r)

rhr(k,t,s) = _k dpdqPimn(k)P_rs(p) x
:p+q



(28)

(29)

am_(p, t, s)Qn, (q, t, s)

Fq(k,t,s) -- [ dpdqPimn(k)Pjrs(k) x
Jk =p+q

Q,_ (p, t, s)Qmr (q, t, s)

In Eqs. (28) and (29),

Piton(k) ----kmPin(k) + knPim(k)

Pim(k) = _im -- k-2kikm

and flpq is the antisymmetric rotation matrix.

The solution of these equations in complete generality is not known. A natural perturbation theory treats

the rotation terms as small, and perturbs about an isotropic turbulent state. This approach is adopted by

Shimomura and Yoshizawa (1986), who derive a TSDIA theory in which inhomogeneity and rotation are

both described by small parameters.

A complementary limit is also of interest. Namely, in the response equation, balance the time derivative

by the rotation term, and treat the eddy damping as small. This linear theory of the response equation

treats strongly rotating turbulence as a case of weak turbulence (Zakharov et al, 1992) in which nonlinear

decorrelation of Fourier modes is dominated by linear dispersive decorrelation (Waleffe, 1993). The result is

conveniently expressed in terms of the Craya-Herring basis

e('(k) = kxn/I kx['_ I

e(2)(k) = kx(kxa)/[ kx(kx['l) I

or the equivalent helical mode basis used, for example, by Waleffe (1993) and Cambon and Jacquin (1989),

and the corresponding tensors

(30)

4o e(1)e(2)i3 (1) (2)= -- ej e i

_ (1) (2)+ (1) (2): e i ej ej e i

(_j = (1) (1) _ ei(2)ej(2)e i ej

_3j (1) (1) (2) (2)= e i ej -F e i ej

Note that _3 _ pq (k).

In this approximation, the leading order solution of Eq. (26) is

(31) Gij (k, r) = {cos(Or)Pq (k) + sin(Or)_°j (k) } H(r)

In Eq. (31), O(k) is defined by

O(k) = k. n/k

r = t - s is the time difference, and H is the unit step function.

Let us adopt the fluctuation-dissipation hypothesis relating the two-time correlation function to the

response function and single-time correlation function

(32) Qij(k, r) = Gim(k, r)Q,,q (k) + Gj,_ (k, -r)Qmi(k)



ConditionsunderwhichthisapproximationisreasonablearediscussedbyWoodruff(1992,1994).Substitut-
ingEqs.(31)and(32)in Eq. (27) suggests that the single-time correlation function should take the general

form containing all of the _ tensors of Eq. (30)

(33) Qij(k) = E QP(k)_(k)
O<p<3

which is equivalent to thc form of the correlation function noted by Cambon and Jacquin (1989). But

substituting Eq. (33) in Eq. (32), we find instead that the symmetry

Q,j(k, T) = Qj_(k, -r)

leads at lowest ordcr in the weak turbulence approximation to the simpler expression

(34) Qij (k, r) -- sin(OT)Q(k)_°j (k) + cos(Ov)Q(k)_j (k)

This simplification is a consequence of the approximate treatment of time correlations; refinement of the

approximation will recover the full expression Eq. (33).

The DIA inertial range cnergy balance (Kraichnan, 1971), which states that a steady state with constant

energy flux exists, is

/5e = [I+ - I-]P_mn(k) dr 2Pt.rs(p)Gm.(p, r)Ons(q, r)Oi_(k, r)

(35) -Pits (k)Gij (k, T)Qns (p, 7)Qmr (q, T)

where the integration operators in Eq. (35) are defined by

r(ko)=f  (k-p-q)dp q
__ko ,q(ko

I-(ko) = / dk [ 5(k - p - q)dpdq
Jk (_ko dp,q>ko

Substituting Eqs. (31) and (34) in Eq. (35) shows that the time integrals in Eq. (35) will contain the factors

T(k, p, q) --- _-ld(±p • f_/pQ 4- q . _/qn ± k . _/kn)(36)

where

Thus, wave-vector integrations take place over resonant triads only (Waleffe, 1993) and these integrals scale

as _-1 (Zhou, 1995).

Following the derivation of the Kolmogorov steady state, we seek a solution of Eq. (35) of the power-law

form

(37) Q(k) = k-_-2 f(n . k/k_)

In view of Eq. (36), the energy balance Eq. (35) requires the scaling a = 2 and the proportionality f -,_ x/_-_.

Define the shell-averaged energy spectrum

(38) E(k) = J dk Q(k)



then (Zhou, 1995)

(39) E(k) = C_¢v/-_k -2

It is easily verified that the flux integral Eq. (35) converges for an infinite k -2 inertial range. Consequently,

the scaling law of Eq. (39) is the scaling of a solution of the DIA equations of motion in the weak turbulence

approximation.

The anisotropy of rotating turbulence implies that the eddy viscosity is a tensor defined so that

our
< uiuj > = -Uors oxs

where TSDIA gives

(40) uijrs = dk dT- Gir(k, r)Qjs (k, r) + (ij)(rs)

and the parentheses indicate index symmetrization. Using the general form of the single-time correlation

function Eq. (33) and performing the time integration,

(41) uijrs = f dk l(f(k ft/kf_) _ x u• _ir (k)_s (k)Q x (k)
J

The delta function dependence of the integrand of Eq. (41) implies that this integrand is nonvanishing

only for vectors perpendicular to the rotation axis. This fact originates in the resonance condition noted

earlier: since TSDIA treats the effect of small turbulent scales on large scales characterizing the mean flow,

it evaluates turbulence transport properties in the distant interaction approximation (Kraichnan, 1987), in

which interactions among modes with wavevectors k, p, q are all treated as distant interactions for which

k/p, k/q --* O. In this limit, only planar triads such that k. f_ = p. 12 = q- n = 0 can satisfy the resonance

condition• This states the "two-dimensionalization" of energy transfer in strongly rotating turbulence, an

observation which is consistent with the more comprehensive theory of Mahalov and Zhou (1996).

The isotropic contribution to the eddy viscosity, obtained by multiplying Eq. (41) by the isotropic tensor

Jij6_s + 6i_Jjs + 5is6jr, is the scalar

(4z)

For a subgrid-scale model, instead

(43)

Closing the dissipation rate e by the resolved production

(44) ¢ = lu(A)S<S< = u(A)(S<) 2
2 3 3

where Si< is the resolved fluctuating strain rate, leads to the Smagorinsky model for strongly rotating turbu-
lence

(45) .(zx) =

Thus, the subgrid scale viscosity is suppressed by rotation. The eddy viscosity has the same A 2 dependence

on grid size as the standard Smagorinsky model for non-rotating turbulence.



Unlikea fully lineartheorylike rapiddistortiontheory,theweakturbulenceapproximationignores
nonlinearityonlyin theresponseequationbutretainsthenonlinearityof theenergyfluxcondition.The
correctionsdueto nonlinearityoftheresponseequationcanbesystematicallyevaluatedin theweakturbu-
lenceapproximation.Namely,substitutingEqs.(31)and(39)inEq. (28)for theeddydampingfactorand
takingthedistantinteractionlimit,

(46) , ~ k @ ~ kv /a

The corrections to the time scale and energy spectrum therefore have the form

1
T ,,_ _{1 + O(fl-3/2)} -1

(47) E _ vf_k-2{1 + O((k2e/123) W2}

The low rotation rate expansion of Shimomura and Yoshizawa (1986) gives the complementary expansions

in positive powers of f_,

T ,-,, ¢-1/3k-2/3{1 + O(_)}

(48) E '_ ¢2/3k-5/3{1 q- O(fl/E1/3k 2/3}

4. The Effect of Rotation on Weakly Compressible Turbulence. In the presence of rotation,

centrifugal and Coriolis terms must be added to the momentum equations. However, the effects of rotation on

the local thermal equilibrium properties of fluids can usually be neglected, so that the entropy and pressure

equations remain unchanged. The modified momentum equations have the form

P 2
(49) i_¢+ 2f_ipUp - (1 + _)f_ xi ....

where terms independent of rotation have not been explicitly written. The mean contribution to the centrifu-

gal term should bc added to the mean momentum equation. The fluctuating component has both solenoidal

and potential parts, which will appear in the equations for wi and ¢.

The Coriolis term must be treated by the Helmholtz decomposition Eq. (12) followed by a second

decomposition into solenoidal and potential parts,

f_ipUp = [Pij(k) + P_ (k)]12jp[Up + Wp + ik-lkp¢]

= Pij(k)f_jpu_ + PipflpjWp + ik-lf_ipkp¢

(50) + +

The first term in Eq. (50) is the usual Coriolis term which causes the modified statistically steady state

described in Sect. 3. The second term is the analogous Coriolis term for the compressible field wi. The

third term is transverse; therefore, it couples the field ¢ to the wi equation. This coupling does not occur in

non-rotating turbulence. The fourth term shows that the incompressiblc field is a source for the compressible

potential field ¢. Finally, the fifth term couples the field wi to the ¢ equation. The anisotropy introduced

by rotation makes this type of coupling between a scalar and a vector possible; this coupling is obviously

impossible in isotropic turbulence. Note the important fact that ¢ is not coupled linearly to itself through

rotation.

In the analysis of non-rotating weakly compressible turbulence, it was not possible to treat all couplings

exactly; likewise, the present analysis will treat all rotation-dependent couplings perturbatively, except for



the rotational self-couplings of the solenoidal fields w and u °°. This defines the diagonal approximation for

rotational effects

(51)

d_ + 2Pij_jpu_ ....

(Vi -t- 2Pij_jpwp -_ -ik-l_ipkp¢ ÷ • • •

= +

where dots indicate centrifugal and rotation-independent terms. In this approximation, it is appropriate to

replace the Kolmogorov steady state for the basic incompressible field u °° by the k -2 steady state for strong

rotation described in Sect. 3.

5. Evaluation of the Transport Coefficients.

5.1. The entropy diffusivity. Since the entropy equation is not altered by rotation, G ss remains the

response function of a passive scalar. The usual Reynolds analogy, which postulates the proportionality of

the time correlations of the velocity and passive scalar fields leads, following the derivation of Eq. (42) to

(52) v88 u K=Css_

in the strong rotation limit.

5.2. The quantities H and /_. According to Eqs. (8) and (10), the evaluation of these quantities

requires the response function G Cp and the two-time pressure correlation in rotating incompressible turbu-

lence. The perturbation theory of RE begins by observing that G _ is the response function of a passive

vector field. Whereas this could be asserted exactly in non-rotating turbulence, the couplings which occur

in Eq. (51) restrict this assertion to the lowest order in the diagonal approximation for rotation effects.

Thus, we assume that to lowest order G ww takes the same form as the response function in Eq. (31)

(53) G_W(k, T) -- {cos(O_')Pij (k) + sin(O_-)_ ° (k)}H(T)

As in RE, the damping functions except for y¢_ all vanish to this order. We must first check that the integral

in Eq. (15) which defines this function converges for the k -2 spectral scaling. As usual, this convergence

check requires the evaluation of the geometric factors in this integral in the limits p, q --* c_. This factor has

the form

(54)

(q,_ 5i, + k,,_ 5in )( k_d jp _-

----km k_ (p)_j (q) - kmpj_mp(P)_ip (q)

÷ knk_ir(p)_,_j(q ) - knpj_p(p)_p(q)

The second and fourth terms, which power counting would suggest cause logarithmic divergence in Eq. (15),

instead vanish by symmetry. The remaining terms are of order p-2 and therefore converge for large p. The

infrared divergence when p --, 0 is explained by the sweeping effect on Eulerian time correlations to which

Kraichnan (1964) first called attention. Rather than evaluate the transport coefficients in a Lagrangian

statistical theory (Kraichnan, 1965; Kaneda, 1981) in which this divergence does not occur, we shall sim-

ply regularize the Eulerian theory by integrating over the range p, q > k only (Kraichnan, 1963). This

regularization leads finally to the result

(55) _?_¢(k, v) = C_¢ V_/12k

10



which can be compared to the correction term computed in Eq. (46).

The evaluation of the two-time pressure correlation function is actually simpler in the weak turbulence

approximation for rotating turbulence that it is for non-rotating turbulence because the resonance condition

and even time parity of time correlation functions force the time dependence cos(O_-). As in the non-rotating

case, convergence of the single-time correlation under the quasi-normal approximation appropriate to the

direct interaction approximation is easily established, and we conclude that

(56) QP( k, r) = CB,nCos( Or)sflk- 3 / 47rk 2

It is now straightforward to verify the calculation

(57)

where

1/H/'_ = _ dk d_- exp(-v/0kr) x

[sin(Vk + _)_- + sin(Vk - _)'r]QP(k)

f_ C_ k_ 2 Vk3(O) + V 2) -- Vk_ 2= 4_rdk 2-_ [0 + V212k 4 + 2(0 - VU)fl2k 2 + _4

V = X/_- O

and

c

0 = 5

The integral in Eq. (57) could be evaluated in closed form. However, its limits for large and small wavenumber

k are easily evaluated directly. Assume that the k -2 spectrum will be cut off at wavenumber k0, which is

either the inverse integral scale, or inverse filter size. If the cutoff scale k0 is large, then approximately

_k °c t C_ -2(58) H/'y ----4r C(Yk)-l le_k -2 = C --_k o
0 C

Setting k0 to the inverse integral scale leads to the single-point model

K 2

(59) n/'_ = C_> -_

These results coincide with those of RE except that the energy spectrum and total kinetic energy are

determined from the k -2 spectrum instead of from the Kolmogorov spectrum. However, the large scales

contribute a different limit, namely,

fk k" Vk 2 -_log(k* /ko)(60) H/'_ = 47r 0 _-_eag- = Ciin<

The scale k* is the scale at which the high wavenumber limit Eq. (58) applies; its value is calculated below.

Note the logarithmic contribution.

The approximation Eq. (58) applies to small scales which are relatively insensitive to rotation. Whereas

the theory of weak compressibility requires the condition K << c 2, the limit Eq. (58) requires the much

stronger condition

(61) g << cV_
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At very high rotation rates, a range of large scales such that F/>> ck can exist. Such scales are described

instead by the limit Eq. (60). The transition between spectral regions is determined by the parameter

(62) k* = a_-
C

Since Eq. (60) describes a condition in which compressibility effects have been reduced, we conclude that

rotation tends to counteract the effects of compressibility. The single-point parameter which discriminates

between regimes is the ratio

K g 1/2

(63) cx/_ -- c _---- ct/2Mt

Weak compressibility is defined by the condition that Mt is small. When in addition ¢1/2M_ is small, rotation

effects are weak; strong rotation effects occur only if ¢l/2M t is large. Note that since rotation reduces the

energy transfer e, large values of the parameter ¢ are possible in rotating compressible turbulence.

The evaluation of the coefficient/_ proceeds similarly. However, it should be noted that the anisotropy

of rotating turbulence actually makes this quantity a tensor, so that the mean equations of motion contain

the pressure term

(64)

and the large scale limit becomes

1¢f _ 1 .0P
[-'_ ij -_O_ij]-_-_j

instead of the isotropic pressure term of Eq. (3). The possibility that sound waves in the mean velocity

field become dispersive as a result of the direction dependence of the effective sound speed deserves further

investigation. In this article, the sound speed will be treated as a scalar. By comparing Eqs. (8) and (10), it

is evident that/) is found from the previous calculation by multiplying the integrand in Eq. (8) by kv/[-/fl.
The small scale limit becomes

cf_ko 2 k0 - C_> v_k°l1 C_> c2_----- _ c2

(65) 1 _ k0-_- = C/_< - CRY< V/-_-/f_3k0
R _v_

The single-point quantities corresponding to Eqs. (64) and (65) are simply

1 / M2 for k0 --* _
(66) _ = t 1/¢ fork0--*0

Eq. (2) shows that/_ represents a modification of the mean density due to compressible flucations. Eqs.

(65) and (66) show that this modified mean density actually vanishes for very large rotation rates, again

suggesting that rotation tends to counteract compressibility effects.

5.3. The pressure and bulk viscosities. Like R, these quantities are tensors in rotating turbulence,

but only scalar values will be computed here. Eq. (6) shows that the pressure diffusivity upp is the sum of

two terms. For the first term, in the low turbulent Mach number limit,

(67)

ioo r/3/4 -I- 2r/S 2v_lP = o dk (r//2) 4 nu 2(r1/2)2(S 2 + f_2) + ($2 _ f_2)2

~ ek 2 - 30/4)- k-i k
o

K 2
-----C1

n(c _ - 3O/4)

_/_-_k- 2
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TABLE 2

Main Scaling Results

Single-point model General subgrid Model Smagorinsky model

vvp M2 K/f_ EA 2 /c 2 (S <)3Aa/c2

_"" Kin VTl_Z_ (S<)_Z_/_

H (large k) gMt 2 ¢f_A2/c 2 f_(S<)3A4/c2

H (small k) .¢/fl ¢A°/_ (S<)3A2/f_

1//_ (large k) M 2 v_-_A/c 2 (S<)3/2f_l/2A2/ca

1/f_ (small k) _/g_ _X_-ff_A-1 (S<)3/2_-3/2A°

where r/is the incompressible damping factor of Eq. (25) This expression applies to both large and small

values of the cutoff scale k0. The second term is evaluated like the entropy diffusivity as

cf_ -2 Ks
(6s) _P = _k0 = C_h-_2

In summing these contributions, care must be taken that cancellations between these terms do not change

the limits of the transport coefficients. In the absence of such cancellations,

(69) upp=C_KK
vp c 2 fl

This result can be compared with the non-rotating result in RE. Rotation has the same effect that it has on

the incompressible eddy viscosity: the turbulence time scale K/¢ is replaced by 1/_.

A similar calculation leads to an explicit expression for the bulk viscosity,

K

(70) _ = ca=_

Note that in RE, this quantity was of order Mt °. Again, in the limit of strong rotation, the consequence of

rotation is the simple replacement of the incompressible turbulence time scale by 1/fL

The results of this section are summarized in Table 2. The format follows Table 1, except that both

large and small scale limits are given for the equilibrium properties II and/_.

6. The Equation of State of Rotating Weakly Compressible Turbulence. Beginning with the

first mixing length models, turbulence modeling has always postulated that turbulent fluctuations modify

fluid transport properties by replacing thermal fluctuations with scale dependent macroscopic turbulent

fluctuations. Analyses of compressible turbulence (Chandrasekhar, 1952, Staroselsky et al, 1990) have noted

analogous turbulence effects on thermal equilibrium properties: velocity fluctuations lead to a modified

equation of state of compressible turbulence. Thus, Eqs. (6), (8) and (10) show that fluctuations modify "7

and lead to changes of the effective pressure and density represented by the terms II and/_.
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In rotating compressible turbulence, the picture is somewhat more complex. The transport coefficients

v are all modified like the incompressible eddy viscosity: the turbulence time scale K/e is replaced by the

rotation time scale 1/12. But thermal equilibrium properties are modified so that two different regimes are

possible: a regime dominated by incompressible fluctuations, in which the sound speed is modified as it is in

non-rotating turbulence, and a rotation dominated regime in which the sound speed enhancement is propor-

tional to x/_-/12 instead. As noted earlier, this limit indicates a reduction of compressibility effects on large

scales by rotation. Pure compressibility effects enter the evolution equations through the turbulent transport

and thermal equilibrium properties of Eqs. (2)- (4) which are evaluated in Table 1; the further effects of

rotation on the evolution equation appear through the rotation-induced modifications of the transport and

equilibrium properties which are evaluated in Table 2.

7. Conclusions. Yoshizawa's TSDIA formalism provides a systematic approach to the complex coupled

field problem of rotating weakly compressible turbulence. In this problem, the appearance of two natural

dimensionless parameters would frustrate attempts to derive appropriate models heuristically. In particular,

the modified equation of state in rotating weakly compressible turbulence is not obvious.

The main defect of this calculation is the assumption of a diagonal approximation for rotation effects,

although like RE, we do not make a diagonal approximation for compressibility effects. We should attempt

either to verify that the non-diagonal terms are small, or look for a more sophisticated approximation.

A novel feature of the present analysis is the use of a non-Kolmogorov steady state as the reference state

of turbulence in a TSDIA calculation. The introduction of such steady states expands the power and utility

of TSDIA to a wider range of problems.

Compressible swirling jets are a natural class of flows to which the present theory should apply. The

theory is consistent with the general observation that rotation counteracts the suppression of mixing which

is the physically most prominent feature of compressible jets. But quantitative conclusions will obviously

require computational tests of the theory.
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